Pore-like structures in biological membranes.
نویسندگان
چکیده
In freeze-fracture replicas, biological membranes appear as smooth surfaces interrupted by random globular protrusion, the intramembrane particles. Smooth areas correspond to the membrane phospholipidic domain, while intramembrane particles are the morphological counterpart of membrane proteins. In the present work, examination of membranes in a variety of cell types reveals that a number of intramembrane particles contain an electron-dense spot. The spot is thought to correspond to a minute pit in the particle, filled by the platinum used in the freeze-fracture procedure. Similar images, described previously in intramembrane particles forming the specific array of the gap junction, were interpreted as hydrophilic channels bridging the interior and the exterior of the plasma membrane. Comparison between the gap junction particles and the non-junction particles containing a dense spot suggests that these latter may too contain hydrophilic channels. The channels in random intramembrane particles would represent the morphological counterparts of the water-filled pores described in models of membrane permeability.
منابع مشابه
Evaluation of Vapor Deposition Techniques for Membrane Pore Size Modification
The suitability of three vapor deposition techniques for pore size modification was evaluated using polycarbonate track etched membranes as model supports. A feature scale model was employed to predict the pore geometry after modification and the resulting pure water flux. Physical vapor deposition (PVD) and pulsed plasma-enhanced chemical vapor deposition (PECVD), naturally, form asymmetric na...
متن کاملThe Advances of Electrospun Nanofibers in Membrane Technology
Electrospinning is a simple and versatile technique that relies on the electrostatic repulsion between surface charges to continuously draw nanofibers from a viscoelastic fluid. Electrospinning can generate nanofibers with a number of secondary structures. Surface and/or interior of nanofibers can be functionalized with molecular species or nanoparticles during or after an electrospinning proce...
متن کاملNuclear Pore-Like Structures in a Compartmentalized Bacterium
Planctomycetes are distinguished from other Bacteria by compartmentalization of cells via internal membranes, interpretation of which has been subject to recent debate regarding potential relations to Gram-negative cell structure. In our interpretation of the available data, the planctomycete Gemmata obscuriglobus contains a nuclear body compartment, and thus possesses a type of cell organizati...
متن کاملRecent Developments in Carbon Nanotube Membranes for Water Purification and Gas Separation
Carbon nanotubes (CNTs) are nanoscale cylinders of graphene with exceptional properties such as high mechanical strength, high aspect ratio and large specific surface area. To exploit these properties for membranes, macroscopic structures need to be designed with controlled porosity and pore size. This manuscript reviews recent progress on two such structures: (i) CNT Bucky-papers, a non-woven,...
متن کاملOptimized Tree-Type Cylindrical-Shaped Nanoporous Filtering Membranes with 6 or 7 Branch Pores in each Pore Tree
The performances of the optimized tree-type cylindrical-shaped nanoporous fltering membranes with six or seven branch pores in each pore tree are analytically studied. The radius Rb,1 of the branch pore for fltration is normally on the 1 or 10 nm scales. The larger trunk pore is for ...
متن کاملThe Ultrafiltration Performance of Cellulose Acetate Asymmetric Membranes: A New Perspective on the Correlation with the Infrared Spectra
Integral asymmetric cellulose acetate (CA) membranes were casted by phase-inversion with formamide varying content - 22, 30 and 34% - as pore promoter. These membranes, CA-22, CA-30 and CA-34, were analyzed by infrared spectroscopy in attenuated total reflection mode (ATR-FTIR) to investigate the porous membrane matrix influence on the polymer/water/solute interactions and the selective ultrafi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 25 شماره
صفحات -
تاریخ انتشار 1977